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The new methodology to increase a therapeutic potential of cell transplantation was developed here by
the use of three-dimensional spheroids of transplanting cells subsequent to the genetic modification
with non-viral DNA vectors, polyplex nanomicelles. Particularly, spheroids in regulated size of 100-mm of
primary hepatocytes transfected with luciferase gene were formed on the micropatterned culture plates
coated with thermosensitive polymer, and were recovered in the form of injectable liquid suspension
simply by cooling the plates. After subcutaneously transplanting these hepatocyte spheroids, efficient
transgene expression was observed in host tissue for more than a month, whereas transplantation of a
single-cell suspension from a monolayer culture resulted in an only transient expression. The spheroid
system contributed to the preservation of innate functions of transplanted hepatocytes in the host tissue,
such as albumin expression, thereby possessing high potential for expressing transgene. Intravital
observation of transplanted cells showed that those from spheroid cultures had a tendency to localize in
the vicinity of blood vessels, making a favorable microenvironment for preserving cell functionality.
Furthermore, spheroids transfected with erythropoietin-expressing DNA showed a significantly higher
hematopoietic effect than that of cell suspensions from monolayer cultures, demonstrating high po-
tential of this genetically-modified spheroid transplantation system for therapeutic applications.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Cell transplantation therapy has attracted considerable atten-
tion for the treatment of various intractable diseases. The thera-
peutic potential of cell transplantation is primarily dependent on
the efficacy and longevity of bioactive factors secreted from the
transplanted cells [1]. In this respect, genetic modification of
transplanted cells by introducing transgene(s) using either viral or
non-viral methods is a promising approach to modulate the
secretion of bioactive factors [2]. In addition to endogenous factors,
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transgenes expressing functional proteins and peptides such as
growth factors and coagulation factors can further enhance the
therapeutic potential of transplanted cells [3e5]. Furthermore, a
scheme to maintain transplanted cells in optimal long-acting con-
ditions is a key for successful treatment. Although the survival rate
of cells varies depending on cell type and source, therapeutic effects
are likely to be limited by the death of transplanted cells or the loss
of cell activity due to unfavorable microenvironments such as
ischemia, hypoxia, or inflammation [6].

Three-dimensional (3D) spheroid cell culture is a promising
technique to improve cell survival and function by preserving cell-
to-cell interactions. Several groups including ours have reported
that 3D spheroid cultures could increase the survival rate of the
cells and enhance innate functions such as albumin secretion from
primary hepatocytes and multilineage differentiation of mesen-
chymal stem cells (MSCs) [7e12]. Recently, we introduced a pro-
cedure in genetically-modified cell transplantation using a 3D
spheroid culture system on micropatterned culture plates (Cell-
d system with genetic modification for cell transplantation therapy,
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able�multi-well plates; Transparent, Chiba, Japan) combined with
gene transfection by polyplex nanomicelles [13]. The polyplex
nanomicelle is a non-viral gene carrier composed of plasmid DNA
(pDNA) and poly(ethylene glycol) (PEG)epolycation block co-
polymers, which possesses coreeshell structure consisting of PEG
shell and inner core of pDNA in a condensed state [14e16].
For the polycation, we developed poly[N’-[N-(2-aminoethyl)-2-
aminoethyl] aspartamide] [PAsp(DET)]. This polycation possesses
two distinguished properties: the efficient capability of endosomal
escape and rapid biodegradability in the cytoplasm, allowing safe
and effective gene introduction into various cells [17e19]. Using
this polyplex nanomicelle system, we achieved high and prolonged
transgene expression for more than one month from the spheroids
of rat primary hepatocytes cultured on micropatterned plates [13].
The nanomicelle-treated spheroids also exhibited sustained albu-
min secretion at a level comparable with that exhibited by un-
treated spheroids, suggesting that this system allows safe gene
transfection without impairing the innate function of hepatocytes.

In this study, the hepatocyte spheroids gene-transfected by the
polyplex nanomicelles were transplanted into mice to obtain
insight into their application in cell therapy. For transplanting
spheroids in their intact 3D form, we introduced thermosensitive
property to the micropatterned culture plate, which allows the
recovery of spheroids simply by lowering the temperature of the
plate. Then, hepatocyte spheroids transfected with luciferase
expressing pDNA were transplanted to subcutaneous tissue to
evaluate the efficiency of transgene expression in host animal. The
advantages of this system were analyzed in detail by intravital
imaging of transplanted cells in the host tissue. Finally, to examine
therapeutic potential, hepatocyte spheroids receiving transfection
with erythropoietin-expressing pDNA were transplanted, followed
by evaluation of the hematopoietic effect in the host mice.

2. Materials & methods

2.1. Materials

Collagenase, dimethylsulfoxide (DMSO), dexamethasone, insulin, and L-proline
nicotinamide were purchased from Wako Pure Chemical Industries (Osaka, Japan).
Hank’s buffered salt and L-ascorbic acid 2-phosphate (Asc-2P) were purchased from
SigmaeAldrich (St. Louis, MO, USA). Dulbecco’s modified Eagle’s medium (DMEM),
trypsin inhibitor, and Pen-Strep-Glut (PSQ) were purchased from GIBCO (Frederich,
MD, USA). Human epidermal growth factor (hEGF) was purchased from Toyobo
(Osaka, Japan). Fetal bovine serum (FBS) was purchased from Dainippon Sumitomo
Pharma (Osaka, Japan). For the construction of plasmid DNA (pDNA) expressing
luciferase, the protein-expressing segment of pGL4.13 plasmid (Promega, Madison,
WI, USA) was cloned into pCAG-GS plasmid (RIKEN, Tokyo, Japan) to obtain
expression under CAG promoter/enhancer. For pDNA expressing Gaussia luciferase
(Gluc), the protein-expressing segment of pCMV-Gluc control plasmid (New En-
gland BioLabs, Ipswich, MA, USA) was cloned into pCAG-GS. For pDNA expressing
mouse erythropoietin (mEpo), protein expressing segments of pCMV-X4 plasmid
(OriGene, Rockville, MD, USA) were cloned into pCAG-GS. These pDNAs were
amplified in competent DH5a Escherichia coli and purified using a NucleoBond� Xtra
Maxi Plus (Takara Bio, Shiga, Japan).

2.2. Animals

Balb/c nude mice (female; 7 weeks old) and Wistar rats (male; 5 weeks old)
were purchased from Charles River Laboratories (Yokohama, Japan). Transgenic
SpragueeDawley (SD) rats (male; 5 weeks old) expressing EGFP in all tissues under
the control of CAG promoter/enhancer (EGFPeSD rats) were purchased from Japan
SLC (Shizuoka, Japan). All animal studies were conducted with the approval of the
Animal Care and Use Committee of the University of Tokyo, Tokyo, Japan.

2.3. Isolation and culture of primary hepatocytes

Rat hepatocytes were isolated using a modified two-step collagenase digestion
process as previously reported [20,21]. In brief, after the rat liver was perfused from
the hepatic portal vein with a special solution described below, the collagenase
solution was recirculated through the liver to obtain hepatocytes. The perfusion
medium (pH 7.2) was composed of 8 g/L sodium chloride (NaCl), 400 mg/L potas-
sium chloride (KCl), 78 mg/L sodium dihydrogen phosphate dehydrate (NaH2-
PO4$2H2O), 151 mg/L disodium hydrogen phosphate 12-water (Na2HPO4$12H2O),
2.38 g/L 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES), 190 mg/
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L ethylene glycol tetraacetic acid (EGTA), 350 mg/L sodium hydrogencarbonate
(NaHCO3), and 900mg/L glucose. The collagenase solution (pH 7.2) was composed of
500 mg/L collagenase, 9.8 g/L Hank’s buffered salt, 2.38 g/ml HEPES, 556 mg/ml
calcium chloride hydrate (CaCl2$H2O), 350 mg/L NaHCO3, and 50 mg/L trypsin in-
hibitor. To preserve the function of hepatocytes under in vitro conditions, a special
medium comprising DMEM supplemented with 10% FBS, 1% PSQ, 1% DMSO,
10�7 mol/L dexamethasone, 0.5 mg/ml insulin, 10 mmol/L nicotinamide, 0.2 mmol/L
Asc-2P, and 10 ng/ml hEGF was used for cell culture [22].

2.4. Recovery and transplantation of the cells from spheroid and monolayer cultures

The micropatterned architecture was constructed on thermosensitive cell cul-
ture plates (Upcell�, CellSeed Inc., Tokyo, Japan) to prepare the thermosensitive
micropatterned plates, in which cell adhesion sites of a 100-mm diameter are
regularly arrayed surrounded by a non-adhesive area. Primary hepatocytes were
seeded onto 12- or 96-well culture plates at densities of 4 � 105 cells/well or
4 � 104 cells/well, respectively. The spheroid cells were recovered as a suspension
for transplantation studies by lowering the temperature without any damage to the
structure of the spheroids. Cells on monolayer culture plates were recovered by
trypsinization followed by centrifugation at 200� g for 3 min. The recovered sus-
pension from a spheroid and monolayer culture was transplanted to the subcu-
taneous tissue of Balb/c nude mice by injection using 23-gauge needles. The number
of cells to be transplanted per mouse was adjusted at the stage of seeding the cells
onto the plate, to be 2 � 105, 4 � 105, and 1.2 � 106 for the transplantation to
forelimb, abdomen, and earlobe, respectively. Because the number of recovered cells
per well in 12-well plate was determined to be (4.2 � 0.6) � 105, and
(4.8 � 0.7) � 105 (means � SD) in spheroid and monolayer culture respectively, the
number of transplanted cells per mouse were comparable between these two
groups.

2.5. Gene introduction using polyplex nanomicelles

PEGePAsp(DET) block copolymer and PAsp(DET) homopolymer were synthe-
sized as previously reported [17]. PEG used in this study had a molecular weight
(Mw) of 12,000, and the polymerization degree of the PAsp(DET) segment was
determined to be 59 by 1H-NMR. The polymerization degree of the PAsp(DET) ho-
mopolymer determined by 1H-NMR was 55.

Polyplex nanomicelles were prepared as described in our previous report [13]. In
brief, the nanomicelle was formed by mixing polymer and pDNA solutions in 10 mM

Hepes buffer (pH 7.3). For preparing the polymer solution, we recently revealed that
the combined use of two polymers, PEGePAsp(DET) block copolymer and PAsp(DET)
homopolymer, was advantageous to achieve both effective PEG shielding and
functioning of PAsp(DET) to enhance endosomal escape [23]. Thus, in this study,
nanomicelles were prepared by mixing pDNA solution with a premixed solution of
the two polymers at the equal molar ratio of residual amino groups at the N/P ratio
(residual molar ratio of total amino groups in the two polymers to phosphate groups
in pDNA) of 10. The diameter of the resulting nanomicelles was determined to be
approximately 70 nm by dynamic light scattering (DLS) [24]. In 12-well plate, a total
of 10 mg of pDNAwas added to 1 ml of culture medium for each well, and in 96-well
plate, 1 mg of pDNA was added to 100 ml of culture medium.

2.6. In vivo and in vitro measurement of luciferase expression

In vivo luciferase expression after transplantation was measured using an IVIS�
Imaging System (Xenogen Corp., Alameda, CA, USA) after intravenous injection of D-
luciferin (150 mg/kg, Sumisho Pharmaceuticals International, Tokyo, Japan).

In vitro analyses were performed using Gluc-expressing pDNA. Expressed Gluc is
secreted into the culture medium and remains stable for more than a week [25]. In
this study, to trace the real-time activity of transgene expression, the culture me-
dium was replaced with fresh medium precisely 24 h before each indicated
measuring point. 24 h after the replacement, the culture medium was collected to
quantify Gluc secretion during the last 24 h, using a Renilla Luciferase Assay System
(Promega) and GloMax� 96 Microplate Luminometer (Promega) following the
manufacturer’s protocol.

2.7. Quantification of transplanted cells and transgene and gene expression in host
tissue

At 24 h after hepatocyte transplantation into the forelimb of mice, total DNA and
mRNA in whole of the cutaneous and subcutaneous tissue in the forelimb were
extracted from the transplantation site using DNeasy Blood & Tissue Kits (Qiagen,
Hilden, Germany) and RNeasy Mini Kits (Qiagen), respectively, according to the
manufacture’s protocol. Using an ABI Prism 7500 Sequence Detector (Applied Bio-
systems, Foster City, CA, USA), quantitative real-time PCR (qRT-PCR) was performed.
Because hepatocytes from male rats were transplanted to female mice, the number
of transplanted cells in the host tissue was proportional to the copy number of SRY
genes on Y chromosomes, which was amplified using the following primer pair:
forward, CATCGAAGGGTTAAAGTGCCA; reverse, ATAGTGTGTAGGTTGTTGTCC, with
standardization by quantifying pDNA copies of mouse b-actin (Mm00607939,
Applied Biosystems). The number of transgenes (luciferase-expressing pDNA) in the
host tissue was quantified using the following primer pair: forward,
d system with genetic modification for cell transplantation therapy,
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TGCAAAAGATCCTCAACGTG; reverse, AATGGGAAGTCACGAAGGTG. The mRNA level
of albumin expression was quantified and standardized with the mRNA level of b-
actin using TaqMan� Gene Expression Assays (albumin: Rn00592480_m1, b-actin:
Mm00607939, Applied Biosystems).

2.8. Intravital microscopic imaging of transplanted cells

The hepatocytes were isolated from EGFPeSD rats, and cultured as described
above. The distribution of the cells was evaluated 24 h after transplantation tomouse
earlobes using intravital real-time confocal laser scanningmicroscopy [26]. One hour
before imaging, Evans Blue dye (2.5 mg/kg; Wako), which binds to serum albumin,
was intravenously injected to visualize blood vessels. All picture acquisitions were
performed using a Nikon A1R confocal laser scanningmicroscope system attached to
anupright ECLIPSE FN1microscope equippedwith a PlanApo l20XNA0.75 objective
lens (Nikon, Tokyo, Japan). The pinhole diameter was set to result in a 10-mm optical
slice. For fluorescent imaging of EGFP and Evans Blue, 488 nm and 640 nm excitation
lasers and band-pass emission filters of 525/50, and 700/75 nm was used, respec-
tively. Acquired data were further processed using Nikon NIS Elements software.
3. Results

3.1. Transgene expression in host mice after transplantation of
genetically-modified hepatocytes

Uniform spheroids from rat primary hepatocytes with a 100-mm
diameter were prepared using micropatterned culture plates, in
which cell adhesion areas of 100-mmdiameter are regularly arrayed
in a two-dimensional manner surrounded by non-adhesive areas
coated by PEG matrix (Cell-able� multi-well plate; Transparent,
Fig. 1. Preparation of spheroids in the form of homogeneous suspension using thermose
spheroid recovery. By placing the plate on ice followed by the addition of cold phosphate-
without disrupting their 3D structure. (b) Microscopic image of hepatocyte spheroids dispe
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Chiba, Japan) [7]. The cell adhesion areas were coated with a
polymer, poly(N-isopropylacrylamide) (PIPAAm), which is widely
used in the temperature-responsive cell recovery system (Fig. 1a)
[27e29]. After placing the plate on ice followed by the addition of
cold phosphate-buffered saline (PBS), PIPAAm becomes hydro-
philic, resulting in the detachment of spheroid from culture plates
simply by pipetting. Thus, spheroids with uniform size of 100 mm
were recovered in the form of an injectable suspension without
disrupting their 3D structure (Fig. 1b).

The recovered spheroids were subcutaneously transplanted to
mouse abdomen simply by injection with 23-gauge needles. It is
confirmed that the spheroid size and structure were kept almost
constant after injecting through 23-gauge and 27-gauge needles,
whose inner diameters were 400 mm and 230 mm, respectively
(Fig. S1). Transgene expression in host mice was evaluated after
transplantation of spheroids transfected with luciferase-expressing
pDNA. For the control, identical numbers of suspended hepatocytes
prepared from a monolayer culture system were transplanted by
injection. Luciferase expression in host mice was measured using
an IVIS� imaging system. After subcutaneous transplantation of
hepatocytes (spheroids or isolated suspensions) in the abdominal
region one day after receiving transfection with luciferase-
expressing pDNA, the spheroids showed approximately 10 times
higher levels of luciferase expression than those in hepatocytes in
suspension form over a period of one month except 4 h after
transplantation (Fig. 2). The increase of luciferase expression from
nsitive micropatterned plate. (a) Scheme of micropatterned plate and mechanism of
buffered saline (PBS), the spheroids were recovered in an injectable suspension form
rsed in PBS. Scale bar: 100 mm.
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Fig. 2. Luciferase expression in host mice after hepatocyte transplantation. After 24 h of transfection with luciferase-expressing pDNA, hepatocyte spheroids and single-cell
suspension from monolayer cultures were transplanted into the subcutaneous tissue of the abdominal region. Luciferase expression in host mice was evaluated using an IVIS�
Imaging System. (a) Representative images of the indicated time point after transplantation, (b) quantification of luminescence intensity. Data are presented as the mean � standard
error of the mean (s.e.m.) (N ¼ 7). Statistical significance was assessed by 2-tailed Student’s t-test, *p < 0.05, **p < 0.01 versus hepatocytes from monolayer cultures.
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4 h to 24 h after transplantation is likely to reflect the time interval
required for intracellular processing of pDNA before its expression,
such as endosomal escape and nuclear entry. A similar result was
obtained for cells transplanted into the subcutaneous tissue of the
forelimbs, in which the spheroids yielded higher transgene
expression than that in the suspension form 24 h after trans-
plantation, while both showed comparable expression at 4 h
(Fig. S2). Thus, the difference in transgene expression between
spheroid and monolayer cultures after transplantation became
obvious over time. It is interesting to note that hepatocytes in both
spheroid and monolayer culture systems exhibited comparable
transgene expression of luciferase in in vitro culture (Fig. 3).
Therefore, the decreased luciferase expression in transplanted he-
patocytes in suspension form over time is suggested to be because
of a gradual decrease in cell survival or functionality after trans-
plantation, which is in a sharp contrast to the spheroids showing
sustained transgene expression.
Fig. 3. Luciferase expression after in vitro transfection. Hepatocytes in spheroid or
monolayer cultures were transfected with a secretory form of luciferase (Gaussia
luciferase; Gluc)-expressing pDNA. The values indicate Gluc expression in the last 24 h
of each time point because the culture mediumwas replaced precisely 24 h prior to the
measurement. The data are presented as the mean � standard error of the mean
(s.e.m.) (N ¼ 6). RLU, relative luminescence unit.
3.2. Cell survival and distribution in host tissue after
transplantation

To obtain more insight into the prolonged transgene expression
of cells in spheroids, we examined the survival and function of
transplanted hepatocytes in host tissue. The number of vital cells in
host tissue was evaluated using quantitative real-time polymerase
chain reaction (qRT-PCR) measurements of the copy number of SRY
genes on the Y chromosome after collecting total DNA from the
host tissue. Using hepatocytes from male rats for cell trans-
plantation into female mice, the number of transplanted cells was
determined by discriminating them from host cells [30]. As shown
in Fig. 4a, the number of hepatocytes in the host tissue 24 h after
transplantation was comparable between the groups of spheroids
and single-cell suspension. The transgene copy numbers (lucif-
erase-expressing pDNA) were also comparable between these two
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groups (Fig. 4b), and even the cells prepared from the monolayer
cultured sample showed a relatively high value. Consequently, the
enhanced transgene expression in spheroids, as seen in Fig. 1, was
not explained by the difference in survival rate of the cells after
transplantation.

The albumin expression in host mice was evaluated as a marker
of innate hepatocyte function by collecting total mRNA from the
transplantation site (forelimb) 24 h after cell transplantation, fol-
lowed by qRT-PCR analyses to calculate the mRNA expression of
d system with genetic modification for cell transplantation therapy,



Fig. 4. Evaluation of the cell number of transplanted hepatocytes and copy number of transfected luciferase pDNA in the host tissue. After 24 h of transfection with luciferase-
expressing pDNA, hepatocyte spheroids and a single-cell suspension from a monolayer culture were transplanted into the subcutaneous tissue of mouse forelimbs. At 24 h af-
ter transplantation, total DNA was extracted from the transplantation site for the following analyses: (a) The number of transplanted hepatocytes was measured using quantitative
real-time PCR (qRT-PCR) analysis of the SRY gene on the Y chromosome, (b) copy number of luciferase pDNA was measured using qRT-PCR. The data are presented as the
mean � standard error of the mean (s.e.m.) (N ¼ 7).
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albumin. As shown in Fig. 5, the hepatocyte spheroids showed
significantly higher albumin expression in the host tissue
compared with that in hepatocytes from the monolayer culture.
This result of preserved albumin secretion in spheroids is consis-
tent with the previous in vitro study results showing sustained al-
bumin secretion in the culture medium from hepatocyte spheroids
[7,13], indicating that spheroid formation essentially contributes to
the maintenance of innate functions, such as albumin secretion of
hepatocytes in both in vitro culture and in vivo transplantation.

To further analyze cell behavior in the host tissue, we performed
imaging of the transplanted cells in the tissue using intravital
confocal microscopy [26]. Hepatocytes from transgenic rats stably
expressing enhanced green fluorescent protein (EGFP) were
transplanted into the earlobes of mice without EGFP expression in
the form of either spheroids or a single-cell suspension, followed by
in vivo imaging 24 h after transplantation. Fig. 6a, b shows typical
Fig. 5. Albumin expression from transplanted hepatocytes in the host tissue. After 24 h
of transfection with luciferase-expressing pDNA, hepatocyte spheroids and single-cell
suspensions from monolayer cultures were transplanted into the subcutaneous tissue
of mouse forelimbs. At 24 h after transplantation, mRNA expression levels of rat al-
bumin in the forelimb were measured using quantitative real-time PCR (qRT-PCR). The
data are presented as the mean � standard error of the mean (s.e.m.) (N ¼ 8). Sta-
tistical significance was assessed by 2-tailed Student’s t-test.
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images exhibiting the distribution of transplanted EGFP-positive
cells. Of interest, in the spheroid-transplanted mice, the EGFP
fluorescence was obviously aligned with blood vessels. The prox-
imity of spheroids to the vessels was confirmed in high-resolution
images with co-staining of the vessels by Evans blue (Fig. 6c). In
contrast, the distribution of hepatocytes from monolayer cultures
showed no specific pattern (Fig. 6b.) Although the detailed mech-
anism of the difference in cell distribution in the host tissue is yet to
be clarified, the localized alignment in the vicinity of blood vessels
is definitely an advantage of the spheroid systems for providing a
favorable microenvironment to preserve cell activity.
3.3. Hematopoiesis after transplantation of erythropoietin-
introduced hepatocyte spheroids

To investigate the feasibility of spheroid transplantation for
therapeutic purposes, hepatocyte spheroids receiving transfection
with erythropoietin-expressing pDNA were transplanted into the
subcutaneous tissue of mice, followed by the evaluation of the
hematopoietic effect induced by erythropoietin [31]. A single-cell
suspension of hepatocytes from a monolayer culture was used as
the control. After the transplantation of erythropoietin-expressing
hepatocyte spheroids, the hematocrit and hemoglobin levels
showed significant increases in hostmice on days 22 and 28 (Fig. 7).
In contrast, hepatocytes from monolayer cultures induced only
marginal increases in hematocrit and hemoglobin levels, suggest-
ing that spheroid transplantation was more beneficial than trans-
plantation of cells from monolayer cultures to obtain therapeutic
efficacy by transgene expression.
4. Discussion

In this study, we demonstrated an effective cell transplantation
for therapeutic purpose by combining two of our original tech-
nologies, non-viral gene transfection vector, and micropatterned
spheroid culture plates. Using themicropatterned plates, the size of
spheroids was controlled in a narrow range around 100 mm to
maintain functionality and survival of the cells in spheroids. Indeed,
in the previous reports, optimal size of hepatocyte spheroids to
obtain maximal secretion of albumin in cultured condition was
determined to be 100 mm, while spheroids with the size of more
than several hundred mm resulted in the necrosis of inner core [32e
34]. By using micropatterned culture plates, we succeeded in the
preparation of spheroids with uniform size of 100 mm, whereas
d system with genetic modification for cell transplantation therapy,



Fig. 6. Intravital microscopic imaging of transplanted hepatocytes in the host tissue. Hepatocytes stably expressing enhanced green fluorescence protein (EGFP, green) were used to
track the transplanted cells. After 24 h of transfection with luciferase-expressing pDNA, the hepatocytes were subcutaneously transplanted into mouse earlobes. At 24 h after
transplantation, earlobes were observed using an intravital confocal laser scanning microscope. (a, b) Broad field images after the transplantation of (a) hepatocyte spheroids and (b)
single-cell suspension from a monolayer culture. Arrowheads indicate alignment of transplanted cells along blood vessels. (c) High-resolution images with co-staining of blood
vessels by intravenous injection of Evans blue (red) after the transplantation of hepatocyte spheroids. Circles indicate association of transplanted cells with the blood vessels. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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precise control of spheroid size was difficult in other commonly
usedmethods, such as those using spinner flasks, and non-adhesive
culture plates, and hanging-drop methods [10,35e37]. It should be
emphasized that the uniform size of spheroids with relatively small
Fig. 7. Hematopoiesis after transplantation of erythropoietin-introduced hepatocytes. Hep
expressing pDNA. At 24 h of transfection, these spheroids and single-cell suspensions from
and 28 days after transplantation, hemoglobin (a) and hematocrit (b) levels were measured
(s.e.m.). (N ¼ 12 for spheroid and monolayer groups, and N ¼ 6 for untreated controls). Sta
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diameter of 100 mmmakes it possible to transplant the spheroids by
commonly used injection needle. The ease of spheroid preparation
even in a large-scale using the micropatterned plates (maximum of
2,500 spheroids per cm2 culture plate) and the practicability of
atocytes in spheroid and monolayer cultures were transfected with erythropoietin-
monolayer cultures were subcutaneously transplanted into mouse abdomens. At 22

from blood samples. The data are presented as the mean � standard error of the mean
tistical significance was assessed by 2-tailed Student’s t-test.
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transplantation by injection needles with maintaining the spheroid
structure is particularly useful for future clinical application.

The other aspect of this system is the genetic modification of the
spheroids by gene introduction using polyplex nanomicelles. The
transgene expression from the spheroids exceeded 10 folds
compared with the hepatocytes from monolayer cultures in host
mice after transplantation (Fig. 2). To confirm the potential of this
system for therapeutic application, we used erythropoietin-
expressing pDNA for genetic modification. Erythropoietin is a
systemically-secreted hormone produced by kidney peritubular
interstitial cells in adult mammals, stimulating the production of
red blood cells [31], Recombinant erythropoietin is clinically used
as a hematopoietic factor [38]; however, the short duration of ac-
tion of recombinant erythropoietin may necessitate multiple doses
to obtain a continuous effect on hematopoiesis. In this study, a
single transplantation procedure for erythropoietin-introduced
hepatocyte spheroids was demonstrated to induce a hematopoi-
etic effect in host mice for more than a month. The effect was
significantly higher than that produced by cell transplantation from
a monolayer culture (Fig. 6). Thus, it was revealed that the sus-
tained manner of transgene expression from the spheroids was
beneficial to obtain a therapeutic effect by secretion of bioactive
factors such as erythropoietin from the transplanted cells into host
mice.

It is interesting that in the in vitro study, transgene expression
was comparable between the spheroid and monolayer culture
groups (Fig. 3). In addition, the total cell number surviving in the
host tissue after transplantation was comparable between these
two groups (Fig. 4). We assumed that the increased transgene
expression from the spheroids was attributed to the enhanced
functionality of individual cells in the spheroids. Indeed, albumin
expression as a marker for the innate function of transplanted
hepatocytes significantly increased in spheroid systems (Fig. 5). For
further investigation of the mechanism, we performed intravital
imaging of the transplanted cells in the host tissue. As shown in
Fig. 6, the cells transplanted as spheroid form had a tendency to
locate in the vicinity of blood vessels, while the cells from the
monolayer culture showed no specific distribution pattern. Thus, it
is likely that the transplantation in spheroid form affected the
subsequent cell behavior in the host tissue to accumulate near the
blood vessels, resulting in prolonged secretion of erythropoietin.
Regarding the unique image shown in Fig. 6a, c that the trans-
planted hepatocytes accumulated to the vicinity of the vessels, it is
still unclear whether these cells migrate as the group of spheroids
or individual cells from the disintegrated spheroids direct to the
vessels. Although the detailed mechanism is yet to be clarified, the
accumulation of transplanted hepatocytes into the vicinity of the
vasculature is apparently beneficial to exert their proper func-
tionality. Presumably, the molecule regulating cell adhesion such as
CXCR4, which were reported to be upregulated in MSC spheroids
compared with that in cells in monolayer culture [39], may play a
crucial role to regulate the cell-to-cell interaction with the host
cells and the extracellular matrix in the host tissue.

5. Conclusion

We established an effective platform for cell transplantation by a
combined use of micropatterned spheroid culture on thermo-
sensitive plates with a non-viral gene introduction system of pol-
yplex nanomicelle. The hepatocyte spheroids could be recovered
simply by lowering temperature with maintaining the spheroid
structure after gene introduction. The spheroids were injectable
directly into host animals by needles, where the transgene
expression as well as innate functionality of hepatocytes repre-
sented by secretion of albumin was effectively preserved in host
Please cite this article in press as: Uchida S, et al., An injectable spheroi
Biomaterials (2013), http://dx.doi.org/10.1016/j.biomaterials.2013.12.012
tissue for more than a month. The transplantation of hepatocyte
spheroids receiving erythropoietin-expressing pDNA provided
sustained therapeutic effect of enhanced hematopoiesis in host
animals, demonstrating the high potential of this system for ther-
apeutic cell transplantation.
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